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Abstract. 
𝑁 players are randomly fitted with a colored hat (𝑞 different colors). All players guess simultaneously 
the color of their own hat observing only the hat colors of the other 𝑁 − 1 players. The team wins if 
all players guess right. No communication of any sort is allowed, except for an initial strategy session 
before the game begins. In the first part of our investigation we have 2,3 or 4 different colors with 
equal probabilities. In the second part we have two colors where the probabilities may differ. We 
construct optimal strategies and maximal probability of winning the game for any number of players. 
 
Introduction. 
Hat puzzles were formulated at least since Martin Gardner’s 1961 article [8]. They have got an 
impulse by Todd Ebert in his Ph.D. thesis in 1998 [6]. Ebert’s hat problem: All players guess 
simultaneously the color (white or black) of their own hat observing only the hat colors of the other 
𝑁 − 1 players. It is also allowed for each player to pass: no color is guessed. The team wins if at least 
one player guesses his hat color correctly and none of the players has an incorrect guess. Ebert’s  hat 
problem with 𝑁 = 2௞ − 1 players is solved in [7], using Hamming codes, and with 𝑁 = 2௞ players in 
[5] using extended Hamming codes. Lenstra and Seroussi [15] show that in Ebert’s Hat Game, playing 
strategies are equivalent to binary covering codes of radius one. Ebert’s asymmetric version (where 
the probabilities of getting a white or black hat may be different) is studied in [18],[19],[20]. 
In this paper 𝑁 distinguishable players are randomly fitted with a colored hat (𝑞 different colors). All 
players guess simultaneously the color of their own hat observing only the hat colors of the other 
𝑁 − 1 players. The team wins if all players guess his or her hat color correctly. An initial strategy 
session is allowed. Our goal is to maximize the probability of winning the game and to describe 
optimal strategies.  
The results of our investigation are rather intriguing. For example 10 players, 3 colors with equal 
probability: guessing at random gives winning probability 3ିଵ଴ = 1 59049⁄  , where our strategy will 
give probability 1 3⁄ . Another example: 10 players, 4 colors with equal probability: guessing at 
random gives winning probability 4ିଵ଴ = 1 1048576⁄  , where our strategy will give probability 1 4⁄ .  

In case of two colors with probabilities 𝑝 and 𝑞 the maximal winning probability is:   ଵା|௤ି௣|ಿ

ଶ
 . 

 
PART I 
 
In this part 𝑁 distinguishable players are randomly fitted with a colored hat (𝑞 different colors with 
equal probability). We obtain optimal strategies and probabilities when 𝑞 = 2, 𝑞 = 3  and 𝑞 = 4. 
 
I.1 GOOD and BAD CASES.  
The 𝑁 persons in our game are distinguishable, so we can label them from 1 to 𝑁.  
Although we are interested in the symmetric case (every color has the same probability), we will 
work for a great part with a generalized model: P(color 𝑘)= 𝑝௞ (𝑘 = 1, . . , 𝑞;  ∑ 𝑝௞

௤
௞ୀଵ = 1).  

Each possible configuration of the hats can be represented by an element of 𝐵 = {𝑏ଵ𝑏ଶ … 𝑏ே|𝑏௜ ∈
{1,2, . . , 𝑞}, 𝑖 = 1,2. . , 𝑁} .  
Player 𝑖 sees code 𝑏ଵ. . 𝑏௜ିଵ𝑏௜ାଵ. . 𝑏ே with decimal value 𝑠௜ = ∑ 𝑏௞ . 𝑞ேି௞ିଵ௜ିଵ

௞ୀଵ + ∑ 𝑏௞. 𝑞ேି௞ே
௞ୀ௜ାଵ  . 

Each player has to make a choice out of 𝑞 possibilities: 1=’guess color 1’, 2=’guess color 2’,…, 
𝑞 =’guess color 𝑞′. We define a decision matrix 𝐷 = ൫𝑎௜,௝൯  where 𝑖 ∈ {1,2, . . , 𝑁} (players); 𝑗 = 𝑠௜ ; 
𝑎௜,௝𝜖{1,2, … , 𝑞} (guess color 1, color 2,…, color 𝑞 ). 
The meaning of 𝑎௜,௝ is: player i sees j and takes decision 𝑎௜,௝ (guess 1 or 2 or … 𝑞 ). 
We observe the total probability (sum) of our guesses. 
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For each 𝑏ଵ𝑏ଶ … 𝑏ே in 𝐵  with 𝑛௞ 𝑘’s  (𝑘 = 1, . . , 𝑞;  ∑ 𝑛௞ = 𝑁
௤
௞ୀଵ ) we have (start: sum=0): 

CASE  𝑏ଵ𝑏ଶ … 𝑏ே    
IF 𝑎ଵ,௦భ

= 𝑏ଵ  AND 𝑎ଶ,௦మ
= 𝑏ଶ  AND ... AND  𝑎ே,௦ಿ

= 𝑏ே THEN sum=sum+𝑝ଵ
௡భ𝑝ଶ

௡మ … 𝑝௤

௡೜  ; 
(all players guess right). 
We define the Hamming distance between 𝑝ଵ

௡భ𝑝ଶ
௡మ … 𝑝௤

௡೜  and 𝑝ଵ
௠భ𝑝ଶ

௠మ … 𝑝௤

௠೜  as  ∑ |𝑛௜ − 𝑚௜|
௤
௜ୀଵ , 

where ∑ 𝑛௜
௤
௜ୀଵ = ∑ 𝑚௜

௤
௜ୀଵ = 𝑁.  

Any choice of the 𝑎௜,௝ in the decision matrix determines which CASES have a positive contribution to 
sum (a GOOD CASE) and which CASES don’t contribute positive to sum (a BAD CASE). 
We focus on player 𝑖 (𝑖 ∈ {1, . . , 𝑁}). Each  𝑎௜,௝ = 𝑚 (𝑚 ∈  {1,2, … , 𝑞}) has (𝑞 − 1) counterparts 
𝑎௜,௝ = 𝑘 (𝑘 ∈ {1,2, … , 𝑞}\{𝑚}): use the flipping procedure in position 𝑖:  CASE 𝑏ଵ. . 𝑏௜ିଵ𝑚𝑏௜ାଵ. . 𝑏ே → 
CASE 𝑏ଵ. . 𝑏௜ିଵ𝑘𝑏௜ାଵ. . 𝑏ே. So, when the GOOD CASE has probability 𝑝ଵ

௡భ𝑝ଶ
௡మ … 𝑝௤

௡೜   we get, for fixed 𝑚 

and 𝑘, a BAD CASE with probability 𝑝ଵ
௡భ𝑝ଶ

௡మ … 𝑝௤

௡೜𝑝௠
ିଵ𝑝௞ and  Hamming distance 2 to our GOOD CASE. 

 
I.2 Hamming Complete Set 
We start with a notation: ∑ 𝑎(𝑛ଶ, . . , 𝑛௤)𝑝ଶ

௡మ … 𝑝௤

௡೜∗
௡మ,..,௡೜

= ∑ 𝑝ଶ
௡మ … 𝑝௤

௡೜
௡మ,..,௡೜

 where 𝑎(𝑛ଶ, . . , 𝑛௤) ≠ 0 

ℋ = {𝑆ଵ, 𝑆ଶ, . . , 𝑆௤} where  𝑆௜ ⊂ ∑ (𝑝ଶ + 𝑝ଷ+. . +𝑝௤)ே = ∑ (𝑝ଶ
௡మ … 𝑝௤

௡೜)∑ ௡೘ஸே 
೜
೘సమ

∗  (𝑖 = 1,2, . . , 𝑞). 

ℋ is Hamming Complete when we have the following three properties: 
(i) 𝑆௜ consists only of elements with Hamming distance greater than 2 to each other 
(ii) The sets 𝑆௜ are disjunct 
(iii) Completeness: ⋃ 𝑆௜ = ∑ (𝑝ଶ + 𝑝ଷ+. . +𝑝௤)ே∗

௜  
 

If we can construct an Hamming Complete Set, then each 𝑆௜ induces a strategy 𝒮௜ with probability 𝒫௜ 
(this will become clear in the next sections). 
We now return to the symmetric case: each color has probability 1 𝑞⁄ . This is an upper bound of 𝒫௜ 
(we can’t do better than the result of one player), so we have: 𝒫௜ ≤ 1 𝑞⁄  (𝑖 = 1,2, . . , 𝑞) and 
∑ 𝒫௜ = 1

௤
௜ୀଵ . 

Conclusion: All strategies 𝓢𝒊 (𝒊 = 𝟏, 𝟐, . . , 𝒒) are optimal and the probability of each strategy is 𝟏 𝒒⁄ , 
independent of the number of players. 
In the next sections we construct  Hamming Complete Sets up to 4 colors. 
 
I.3  Two color Hat Game 
Hamming Complete Set: 
𝑆ଵ = ∑ 𝑝ଶ

௞
௞ ௘௩௘௡   

𝑆ଶ = ∑ 𝑝ଶ
௞

௞ ௢ௗௗ   
𝓢ଵ: guess in such a way that there is an even number of hats of color 2. 
𝓢ଶ: guess in such a way that there is an odd number of hats of color 2. 
𝒫ଵ = 𝒫ଶ = 1 2⁄   , which agrees with 

𝒫ଵ = ∑ ቀ
𝑁
𝑘

ቁ 𝑝ଵ
ேି௞

௞ ௘௩௘௡ 𝑝ଶ
௞ and  𝒫ଶ = ∑ ቀ

𝑁
𝑘

ቁ 𝑝ଵ
ேି௞

௞ ௢ௗௗ 𝑝ଶ
௞  (𝑝ଵ = 𝑝ଶ = 1 2⁄ ). 

 
I.4  Three color Hat Game 

Operator 𝑇 is defined  by 𝑇(𝑝ଶ
௠𝑝ଷ

௡) = ∑ 𝑝ଶ
௠ିଷ௦𝑝ଷ

௡ାଷ௦[
೘

య
]

௦ୀି[
೙

య
]

. 

[𝑝ଵ + (𝑝ଶ + 𝑝ଷ)]ே = ∑ ቀ
𝑁
𝑘

ቁ 𝑝ଵ
ேି௞ே

௞ୀ଴ (𝑝ଶ + 𝑝ଷ)௞ = 1 . 

Concentrating on (𝑝ଶ + 𝑝ଷ)௞, we construct an Hamming Complete Set: 
 

𝑆ଵ = ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡)
[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡ାଷ𝑝ଷ

௡)
[
ಿషయ

మ
]

௡ୀ଴   
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𝑆ଶ = ∑ 𝑇(𝑝ଶ
௡ାଵ𝑝ଷ

௡)
[

ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡ାଶ)
[
ಿషమ

మ
]

௡ୀ଴   
 

𝑆ଷ = ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡ାଵ)
[
ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡ାଶ𝑝ଷ

௡)
[

ಿషమ

మ
]

௡ୀ଴  
 
(i), (ii) and (iii) are easily verified. 
 
Conclusion: All strategies 𝓢𝒊 (𝒊 = 𝟏, 𝟐, . . , 𝟑) are optimal and the probability of each strategy is 𝟏 𝟑⁄ , 
independent of the number of players. 
 
We notice that 𝒮ଷ can be found by interchanging in 𝒮ଶ the colors 2 and 3. 
 
We illustrate our theory with three examples. 
 
Example 1: Three players and three colors. 

𝑆ଵ = ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡)
[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡ାଷ𝑝ଷ

௡)
[
ಿషయ

మ
]

௡ୀ଴ = 𝑇(1) + 𝑇(𝑝ଶ𝑝ଷ) + 𝑇(𝑝ଶ
ଷ) = 1 + 𝑝ଶ𝑝ଷ + (𝑝ଶ

ଷ + 𝑝ଷ
ଷ)  

with probability 𝑝ଵ
ଷ + 6𝑝ଵ𝑝ଶ𝑝ଷ+(𝑝ଶ

ଷ+𝑝ଷ
ଷ), inducing strategy 𝒮ଵ = {300, 111, 030, 003}: when you see 

two identic colors, guess that color, otherwise choose the missing color. 

𝑆ଶ = ∑ 𝑇(𝑝ଶ
௡ାଵ𝑝ଷ

௡)
[

ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡ାଶ)
[
ಿషమ

మ
]

௡ୀ଴ = 𝑇(𝑝ଶ) + 𝑇(𝑝ଶ
ଶ𝑝ଷ) +  𝑇(𝑝ଷ

ଶ) = 𝑝ଶ + 𝑝ଶ
ଶ𝑝ଷ + 𝑝ଷ

ଶ, with 
probability 3𝑝ଵ

ଶ𝑝ଶ + 3𝑝ଶ
ଶ𝑝ଷ+3𝑝ଵ𝑝ଷ

ଶ, inducing strategy 𝒮ଶ ={210, 021, 102}. 𝒮ଷ = {201, 012, 120}.  
 
Example 2: Four players and three colors. 

𝑆ଵ = ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡)
ቂ

ಿ

మ
ቃ

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡ାଷ𝑝ଷ

௡)
ቂ

ಿషయ

మ
ቃ

௡ୀ଴ = 𝑇(1) + 𝑇(𝑝ଶ𝑝ଷ) + 𝑇(𝑝ଶ
ଶ𝑝ଷ

ଶ) + 𝑇(𝑝ଶ
ଷ) = 1 + 𝑝ଶ𝑝ଷ +

𝑝ଶ
ଶ𝑝ଷ

ଶ + (𝑝ଶ
ଷ + 𝑝ଷ

ଷ) , probability 𝑝ଵ
ସ + 12𝑝ଶ𝑝ଷ + 6𝑝ଶ

ଶ𝑝ଷ
ଶ + 4𝑝ଵ(𝑝ଶ

ଷ + 𝑝ଷ
ଷ) which gives strategy 

𝒮ଵ ={400, 211, 022, (130, 103)}. 

𝑆ଶ = ∑ 𝑇(𝑝ଶ
௡ାଵ𝑝ଷ

௡)
[

ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡ାଶ)
[
ಿషమ

మ
]

௡ୀ଴ = 𝑇(𝑝ଶ) + 𝑇(𝑝ଶ
ଶ𝑝ଷ) + 𝑇(𝑝ଷ

ଶ) + 𝑇(𝑝ଶ𝑝ଷ
ଷ) = 𝑝ଶ +

𝑝ଶ
ଶ𝑝ଷ + 𝑝ଷ

ଶ + (𝑝ଶ𝑝ଷ
ଷ + 𝑝ଶ

ସ), probability  4𝑝ଵ
ଷ𝑝ଶ + 12𝑝ଵ𝑝ଶ

ଶ𝑝ଷ + 6𝑝ଵ
ଶ𝑝ଷ

ଶ + 4𝑝ଶ𝑝ଷ
ଷ + 𝑝ଶ

ସ;  
𝒮ଶ = {320, 121, 202, 013, 040} ; 𝒮ଷ = {302, 112, 220, 031, 004} 

Example 3: Ten players and three colors. 
We limit to: 

 𝑆ଵ = ∑ 𝑇(𝑝ଶ
௡𝑝ଷ

௡)
ቂ

ಿ

మ
ቃ

௡ୀ଴ + ∑ 𝑇(𝑝ଶ
௡ାଷ𝑝ଷ

௡)
ቂ

ಿషయ

మ
ቃ

௡ୀ଴ = 𝑇(1) + 𝑇(𝑝ଶ𝑝ଷ) + 𝑇(𝑝ଶ
ଶ𝑝ଷ

ଶ) + 𝑇(𝑝ଶ
ଷ𝑝ଷ

ଷ) + 𝑇(𝑝ଶ
ସ𝑝ଷ

ସ) +

𝑇൫𝑝ଶ
ହ𝑝ଷ

ହ൯ + 𝑇(𝑝ଶ
ଷ) + 𝑇(𝑝ଶ

ସ𝑝ଷ) + 𝑇൫𝑝ଶ
ହ𝑝ଷ

ଶ൯ + 𝑇(𝑝ଶ
଺𝑝ଷ

ଷ) = 
1 + 𝑝ଶ𝑝ଷ + 𝑝ଶ

ଶ𝑝ଷ
ଶ + (𝑝ଶ

଺ + 𝑝ଶ
ଷ𝑝ଷ

ଷ + 𝑝ଷ
଺) + (𝑝ଶ

଻𝑝ଷ + 𝑝ଶ
ସ𝑝ଷ

ସ + 𝑝ଶ𝑝ଷ
଻) + ൫𝑝ଶ

଼𝑝ଷ
ଶ + 𝑝ଶ

ହ𝑝ଷ
ହ + 𝑝ଶ

ଶ𝑝ଷ
଼൯ +

(𝑝ଶ
ଷ + 𝑝ଷ

ଷ) + (𝑝ଶ
ସ𝑝ଷ + 𝑝ଶ𝑝ଷ

ସ)+( 𝑝ଶ
ହ𝑝ଷ

ଶ + 𝑝ଶ
ଶ𝑝ଷ

ହ)+(𝑝ଶ
ଽ +  𝑝ଶ

଺𝑝ଷ
ଷ + 𝑝ଶ

ଷ𝑝ଷ
଺ + 𝑝ଷ

ଽ) 
Strategy 𝒮ଵ ={10.0.0, 811, 622, (460, 433, 406), (271, 244, 217), (082, 055, 028), (730, 703), (541, 
514), (352, 325), (190, 163, 136, 109)}. 
 
There is a way to determine the optimal strategies without using the operator 𝑇. 
We give the key for strategy 𝒮ଵ: 

∑ ቀ
𝑁
𝑘

ቁ௞ ௘௩௘௡ ∑ ൬
𝑘

3𝑠 + 𝑘ଶ
൰

[
ೖ

య
]

௦ୀ଴ + ∑ ቀ
𝑁
𝑘

ቁ௞ ௢ௗௗ ∑ ൬
𝑘

3𝑠 + 𝑘ଵ
൰ = 3ேିଵ

[
ೖ

య
]

௦ୀ଴   

where 𝑘ଵ =
(௞ିଷ)௠௢ௗ଺

ଶ
 and 𝑘ଶ =

௞௠௢ௗ଺

ଶ
 

 

Taking 𝑁 =3, we get: ቀ3
0

ቁ ቀ
0
0

ቁ + ቀ
3
2

ቁ ቀ
2
1

ቁ + ቀ
3
3

ቁ {ቀ
3
0

ቁ + ቀ
3
3

ቁ}, inducing strategy {300, 111, 030, 003}. 
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When 𝑁 =4 we get: ቀ4
0

ቁ ቀ
0
0

ቁ + ቀ
4
2

ቁ ቀ
2
1

ቁ + ቀ
4
4

ቁ ቀ
4
2

ቁ + ቀ
4
3

ቁ {ቀ
3
0

ቁ + ቀ
3
3

ቁ}, inducing strategy 

{400, 211, 022, 130, 103}. 
 
When 𝑁 = 10 we get:  

ቀ
10
0

ቁ ቀ
0
0

ቁ + ቀ
10
2

ቁ ቀ
2
1

ቁ + ቀ
10
4

ቁ ቀ
4
2

ቁ + ቀ
10
6

ቁ ቄቀ
6
0

ቁ + ቀ
6
3

ቁ + ቀ
6
6

ቁቅ +. . + ቀ
10
9

ቁ ቄቀ
9
0

ቁ + ቀ
9
3

ቁ + ቀ
9
6

ቁ + ቀ
9
9

ቁቅ . 

𝒮ଵ = {10.0.0, 811, 622, (460, 433, 406), …, ( 190, 163, 136, 109)}. 

 

I.5  Four color Hat Game 

[𝑝ଵ + (𝑝ଶ + 𝑝ଷ + 𝑝ସ)]ே = ∑ ቀ
𝑁
𝑘

ቁ 𝑝ଵ
ேି௞ே

௞ୀ଴ (𝑝ଶ + 𝑝ଷ + 𝑝ସ)௞ = 1  

Concentrating on (𝑝ଶ + 𝑝ଷ + 𝑝ସ)௞, we construct an Hamming Complete Set: 

𝑆ଵ = ∑ (𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషయ

మ
]

௡ୀ଴   
 

𝑆ଶ = ∑ 𝑝ଶ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషమ

మ
]

௡ୀ଴   
 

𝑆ଷ = ∑ 𝑝ଷ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

ቂ
ಿషభ

మ
ቃ

௡ୀ଴ + ∑ 𝑝ଶ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

ቂ
ಿషమ

మ
ቃ

௡ୀ଴   
 

𝑆ସ = ∑ 𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషమ

మ
]

௡ୀ଴   
 
(i), (ii)  are easily verified. 
To prove completeness, we first consider the sum of coefficients of (𝑝ଶ + 𝑝ଷ + 𝑝ସ)ଶ௞: 

∑ ൬
2𝑘

2𝑖, 2𝑗, 2𝑙
൰௜ା௝ା௟ୀ௞ + 3 ∑ ൬

2𝑘
2𝑖, 2𝑗 + 1,2𝑙 + 1

൰௜ା௝ା௟ୀ௞ିଵ = (1 + 1 + 1)ଶ௞ = 3ଶ௞  

The sum of coefficients of (𝑝ଶ + 𝑝ଷ + 𝑝ସ)ଶ௞ାଵ: 

∑ ൬
2𝑘 + 1

2𝑖 + 1,2𝑗 + 1,2𝑙 + 1
൰௜ା௝ା௟ୀ௞ିଵ + 3 ∑ ൬

2𝑘 + 1
2𝑖, 2𝑗, 2𝑙 + 1

൰௜ା௝ା௟ୀ௞ = 3ଶ௞ାଵ  

 
Conclusion: All strategies 𝓢𝒊 (𝒊 = 𝟏, 𝟐, . . , 𝟒) are optimal and the probability of each strategy is 𝟏 𝟒⁄ , 
independent of the number of players. 
We notice that 𝒮௝ can be found by interchanging in 𝒮௞ the colors 𝑗 and 𝑘   (𝑗 ≠ 𝑘, 𝑗 ≥ 2, 𝑘 ≥ 2). 

Example 1: Two players, four colors. 

𝑆ଵ = ∑ (𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡ = 1 + (𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ)
[
ಿషయ

మ
]

௡ୀ଴  ; probability 
𝑝ଵ

ଶ + 𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ , inducing strategy: {2000,0200,0020,0002}: guess what you see. 

𝑆ଶ = ∑ 𝑝ଶ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿషభ

మ
]

௡ୀ଴ + ∑ 𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡ = 𝑝ଶ + 𝑝ଷ𝑝ସ

[
ಿషమ

మ
]

௡ୀ଴ ; probability 2𝑝ଵ𝑝ଶ +

2𝑝ଷ𝑝ସ; strategy: {1100, 0011}. 
𝒮ଷ = {1010, 0101}; 𝒮ସ = {1001, 0110} 
 
In the next examples we only look at 𝑆ଵ. 
Example 2: Three players, four colors. 

𝑆ଵ = ∑ (𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡ = 1 + (𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ) +
[
ಿషయ

మ
]

௡ୀ଴ 𝑝ଶ𝑝ଷ𝑝ସ ; 
probability 𝑝ଵ

ଷ + 3𝑝ଵ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ) + 6𝑝ଶ𝑝ଷ𝑝ସ ; 𝒮ଵ ={3000, (1200, 1020, 1002), 0111}. 
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Example 3: Four players, four colors. 

𝑆ଵ = ∑ (𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡ = 1 + (𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ) +
[
ಿషయ

మ
]

௡ୀ଴

(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)ଶ + 𝑝ଶ𝑝ଷ𝑝ସ ; probability   𝑝ଵ

ସ + 6𝑝ଵ
ଶ(𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ) + (𝑝ଶ
ସ + 𝑝ଷ

ସ + 𝑝ସ
ସ) + 6(𝑝ଶ

ଶ𝑝ଷ
ଶ +

+𝑝ସ
ଶ𝑝ଶ

ଶ + 𝑝ଷ
ଶ𝑝ସ

ଶ) + 24𝑝ଵ𝑝ଶ𝑝ଷ𝑝ସ. 
𝒮ଵ = {4000, (2200,2020, 2002),(0400, 0040, 0004,0220,0202,0022), 1111} 

Example 4: Five players, four colors. 

𝑆ଵ = ∑ (𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡

[
ಿ

మ
]

௡ୀ଴ + ∑ 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)௡ = 1 + (𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ) +
[
ಿషయ

మ
]

௡ୀ଴

(𝑝ଶ
ଶ + 𝑝ଷ

ଶ + 𝑝ସ
ଶ)ଶ + 𝑝ଶ𝑝ଷ𝑝ସ + 𝑝ଶ𝑝ଷ𝑝ସ(𝑝ଶ

ଶ + 𝑝ଷ
ଶ + 𝑝ସ

ଶ) . 
𝒮ଵ ={ 5000, (3200, 3020, 3002), (1400, 1040, 1004, 1220, 1202, 1022), 2111, (0311, 0131, 0113)}. 
 
 
PART II 
 
In this part 𝑁 distinguishable players are  fitted at random with a white or black hat, where the 
probabilities of getting a white or black hat (𝑝 respectively 𝑞; 𝑝 + 𝑞 = 1 ) may be different, but 
known and the same to all the players. 
 
II.1  Generation of BAD CASES by GOOD CASES. 
In this part we give the white hat code 0 and the black hat code 1. 
Each possible configuration of the white and black hats can be represented by an element of 𝐵 =
{𝑏ଵ𝑏ଶ … 𝑏ே|𝑏௜ ∈ {0,1}, 𝑖 = 1,2. . , 𝑁} .  
Player 𝑖 sees binary code 𝑏ଵ. . 𝑏௜ିଵ𝑏௜ାଵ. . 𝑏ே with decimal value 𝑠௜ = ∑ 𝑏௞. 2ேି௞ିଵ௜ିଵ

௞ୀଵ +

∑ 𝑏௞. 2ேି௞ே
௞ୀ௜ାଵ  .  

Each player has to make a choice (independent of all other players) out of two possibilities: 0=’guess 
white’ and 1=’guess black’. We define a decision matrix 𝐷 = ൫𝑎௜,௝൯  where 𝑖 ∈ {1,2, . . , 𝑁} (players); 
𝑗 = 𝑠௜;  𝑎௜,௝𝜖{0,1} (guess white or guess black). 
The meaning of 𝑎௜,௝ is: player i sees  j and takes decision 𝑎௜,௝  (guess white or guess black). 
We observe the total probability (sum) of our guesses. 
For each 𝑏ଵ𝑏ଶ … 𝑏ே in B  with 𝑛 zero’s  (𝑛 ∈ {0,1, . . , 𝑁}) we have (start: sum=0): 
CASE  𝑏ଵ𝑏ଶ … 𝑏ே    
IF 𝑎ଵ,௦భ

= 𝑏ଵ  AND 𝑎ଶ,௦మ
= 𝑏ଶ  AND ... AND  𝑎ே,௦ಿ

= 𝑏ே THEN sum=sum+𝑝௡𝑞ேି௡ ; 
(all players guess right). 
Any choice of the 𝑎௜,௝ in the decision matrix determines which CASES have a positive contribution to 
sum (a GOOD CASE) and which CASES don’t contribute positive to sum (a BAD CASE). 
We focus on player 𝑖 (𝑖 ∈ {1, . . , 𝑁}). Each  𝑎௜,௝ = 0 has a counterpart 𝑎௜,௝ = 1 and vice versa: use the 
flipping procedure in position 𝑖:  CASE 𝑏ଵ … 𝑏௜ … 𝑏ே → CASE 𝑏ଵ. . .1 − 𝑏௜. . . 𝑏ே.  
When we have a GOOD CASE with probability 𝑞௞𝑝ேି௞ (𝑘 ∈ {0,1, . . , 𝑁}) , then this single GOOD CASE 
generates (by a single bit flip) 𝑘 BAD CASES, each with probability 𝑞௞ିଵ𝑝ேି௞ାଵ and 𝑁 − 𝑘  BAD 
CASES, each with probability 𝑞௞ାଵ𝑝ேି௞ିଵ. In short: 0௞1ேି௞ generates 𝑘 of  0௞ିଵ1ேି௞ାଵ and 𝑁 − 𝑘 
of 0௞ାଵ1ேି௞ିଵ. 
We are interested in both ‘left’ generates ℊ

௅
: {0ேି௞1௞} → {0ேି௞ାଵ1௞ିଵ} and ‘right’ generates 

ℊ
ோ

: {0ேି௞1௞} → {0ேି௞ିଵ1௞ାଵ}, where we use the notation {0௠1௡} for the set of all ቀ𝑚 + 𝑛
𝑛

ቁ 

configurations of elements with 𝑚 zero’s and 𝑛 one’s. 
For example: ℊ

௅
: 00011 →{00001, 00010};  ℊ

ோ
: 00011 →{00111, 01011, 10011}. 

When we have more than one GOOD CASE with probability 𝑞௞𝑝ேି௞, then the behavior of the 
number of generated BAD CASES is dependent of the order in which we choose the GOOD CASES. 
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We give an example: (see Table 3.1); N=5, k=2, ℊ
௅

; when we start with GOOD CASES={00011, 00101}  
we get generated BAD CASES: {00001,00010,00100}. But when we start with GOOD CASES={00011, 
01100} then the generated BAD CASES are: {00001,00010,00100,01000}. In the next sections we 
show that optimal solutions of our game can be found by lexicographical ordering of the GOOD 
CASES.  

𝑖   {0ଷ1ଶ} →     {0ସ1}       𝑒௅,௞,௜ 𝐸௅,௞,௜ 
𝐸௅,௞,௜

𝑖
 

1 0 0 0 1 1 → 0 0 0 0 1  0 0 0 1 0  2 2 2.00 
2 0 0 1 0 1 → 0 0 0 0 1  0 0 1 0 0  1 3 1.50 
3 0 0 1 1 0 → 0 0 0 1 0  0 0 1 0 0  0 3 1.00 
4 0 1 0 0 1 → 0 0 0 0 1  0 1 0 0 0  1 4 1.00 
5 0 1 0 1 0 → 0 0 0 1 0  0 1 0 0 0  0 4 0.80 
6 0 1 1 0 0 → 0 0 1 0 0  0 1 0 0 0  0 4 0.67 
7 1 0 0 0 1 → 0 0 0 0 1  1 0 0 0 0  1 5 0.71 
8 1 0 0 1 0 → 0 0 0 1 0  1 0 0 0 0  0 5 0.63 
9 1 0 1 0 0 → 0 0 1 0 0  1 0 0 0 0  0 5 0.56 

10 1 1 0 0 0 → 0 1 0 0 0  1 0 0 0 0  0 5 0.50 
Table II.1.1: GOOD CASES are of the form 0ଷ1ଶ (left block), the second and third block are the 
generated BAD CASES of the form 0ସ1.   

We define 𝑒௅,௞,௜ as the number of generated BAD CASES, applying ℊ
௅

, in row 𝑖 of the ቀ𝑁
𝑘

ቁ possible 

configurations 0௞1ேି௞.  The cumulative number of generated BAD CASES is defined by 𝐸௅,௞,௜ =

∑ 𝑒௅,௞,௝
௜
௝ୀଵ . Analog we define 𝑒ோ,௞,௜ and 𝐸ோ,௞,௜. 

The quotients 𝐸௅,௞,௜/𝑖  and 𝐸ோ,௞,௜/𝑖  play a key role in our theory (see Theorem 5.1). We notice that in 
this example we have a minimal quotient 𝐸௅,௞,௜/𝑖  at the last row. 
 
II.2  Lexicographical ordering. 
In this section we consider the hat problem with 𝑚 white and 𝑛 black hats. What we need is a lower 
bound of the total number of generated BAD CASES 𝐸௅,௞,௜, where we use ℊ

௅
and 𝑖 is the number of 

GOOD CASES with probability 𝑞௞𝑝௠ା௡ି௞ (1 ≤ 𝑖 ≤ ቀ
𝑚 + 𝑛

𝑛
ቁ). We will show that lexicographical 

ordering is a way to obtain the lower bound. Elements of ℊ
௅

({0௠1௡} ) at row 𝑖 that occur for the 
first time contribute to 𝑒௅,௞,௜. Each element of ℊ

௅
({0௠1௡} ) at row 𝑖  that has been produced already 

is called a hit and doesn’t contribute to 𝑒௅,௞,௜ . 
 
Lemma II.2.1 
Hits in ℊ

௅
{0௠1௡} only occur when the Hamming distance in {0௠1௡}  is 2. 

Proof 
The Hamming distance between 𝑎 ∈ {0௠1௡}  and ℊ

௅
(𝑎) is 1 (1 bit is flipped). When ℊ

௅
(𝑎) ∩

ℊ
௅

(𝑏) ≠ ∅ and 𝑎 ≠ 𝑏 then the Hamming distance between 𝑎 and 𝑏 is 2. Conversely, when the 
distance is 2, then bit flipping the 1’s in the positions where the distance is generated will produce 
the hit.∎ 
 
Lemma II.2.2 
Minimizing the total number of generated BAD CASES is the same as maximizing the total number of 
hits. 
Proof 
What we need is a lower bound of the total number of generated BAD CASES 𝐸௅,௞,௜, where 𝑖 is the 
number of GOOD CASES we have used. Let 𝐻௅,௞,௜  be the number of total hits in the first 𝑖 rows.  
For fixed 𝑖 we have 𝐸௅,௞,௜ + 𝐻௅,௞,௜ = 𝑛𝑖 , so for each 𝑖 we have: 𝑚𝑖𝑛 𝐸௅,௞,௜ = 𝑚𝑎𝑥 𝐻௅,௞,௜. ∎ 
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Theorem II.2.1 

Lexicographical ordering generates a lower bound on 𝐸௅,௞,௜  (𝑖 = 1,2, . . , ቀ
𝑚 + 𝑛

𝑛
ቁ), where we have 𝑚 

players with a white hat and 𝑛 players with a black hat. 
Proof  
Combining Lemma’s II.2.1 and II.2.2 yields: Minimizing the total number of generated BAD CASES in 
ℊ

௅
({0௠1௡}) can be done by maximizing the total number of elements in {0௠1௡} with Hamming 

distance 2. Without loss of generality we start with 0௠1௡. We focus on an ordered subset of  𝑖 

elements of {0௠1௡}, starting with 0௠1௡  where 1 ≤ 𝑖 ≤ ቀ
𝑚 + 𝑛

𝑛
ቁ.   To obtain maximum number of 

elements with Hamming distance 2, we work in 0௠ି௦{0௦1௡}, where {0௦1௡} needs to be as small as 

possible. We have:  ቀ𝑠 + 𝑛 − 1
𝑛

ቁ < 𝑖 ≤ ቀ
𝑠 + 𝑛

𝑛
ቁ. When 1 ≤ 𝑖 ≤ ቀ

𝑚 + 𝑛 − 1
𝑛

ቁ we have to deal with 

0{0௠ିଵ1௡} and when ቀ𝑚 + 𝑛 − 1
𝑛

ቁ < 𝑖 ≤ ቀ
𝑚 + 𝑛

𝑛
ቁ we have 1{0௠1௡ିଵ}. 

So we arrive at [0{0௠ିଵ1௡} ∪ 1{0௠1௡ିଵ}], where [ ] is the notation for an ordered set; all elements 
of  0{0௠ିଵ1௡} precedes all elements of 1{0௠1௡ିଵ}. 
We use induction to 𝑚 + 𝑛. For two players (𝑚 + 𝑛 = 2) we can verify that lexicographical ordering 
generates an optimal solution. Now suppose that for 𝑚 + 𝑛 − 1 players lexicographical ordering 
generates an optimal solution. Then {0௠ିଵ1௡} and {0௠1௡ିଵ} on itself gives the desired result by 
induction assumption, but we have to study the interference in [0{0௠ିଵ1௡} ∪ 1{0௠1௡ିଵ}]. We 

focus on the first 𝑖 rows in {0௠1௡}. When 𝑖 ≤ ቀ
𝑚 + 𝑛 − 1

𝑛
ቁ then 0{0௠ିଵ1௡} will do the job. Suppose 

𝑖 > ቀ
𝑚 + 𝑛 − 1

𝑛
ቁ then we use all of 0{0௠ିଵ1௡} and 𝑖 − ቀ

𝑚 + 𝑛 − 1
𝑛

ቁ elements of 1{0௠1௡ିଵ}.  

We have ℊ
௅

(1{0௠1௡ିଵ}) = [0{0௠1௡ିଵ} ∪ 1ℊ
௅

({0௠1௡ିଵ})] where 0{0௠1௡ିଵ} =

0ℊ
௅

({0௠ିଵ1௡}) = ℊ
௅

(0{0௠ିଵ1௡}) so every element of 0{0௠1௡ିଵ} has a hit with ℊ
௅

(0{0௠ିଵ1௡}) 
and this has no effect on 𝐸௅,௞,௜. The elements of 1ℊ

௅
({0௠1௡ିଵ}) start with an 1 and have no 

interference with 0{0௠ିଵ1௡}. ∎ 
 
In this section we focused on ℊ

௅
, but the same procedure can be applied to ℊ

ோ
.  

 
II.3  SAFE positions. 
We start with a GOOD CASE with probability 𝑞௞𝑝ேି௞ (𝑘 ∈ {0,1,2, . . , 𝑁}). When 𝑘 = 0 then 
𝑝ேgenerates via ℊ

ோ
  all 𝑁 elements 𝑞𝑝ேିଵ ; when 𝑘 = 𝑁 then 𝑞ே generates via ℊ

௅
 all 𝑁 elements 

𝑝𝑞ேିଵ. In this section we suppose 𝑘 ∈ {1,2, . . , 𝑁 − 1}. 
When 𝑎𝑞௞ିଵ𝑝ேି௞ାଵ + 𝑏𝑞௞𝑝ேି௞ + 𝑐𝑞௞ାଵ𝑝ேି௞ିଵ is part of the solution of our hat problem, then we 

use the notation [𝑎, 𝑏, 𝑐]௞. We want [ቀ
𝑁

𝑘 − 1
ቁ − 𝐸௅,௞,௜, 𝑖, ቀ

𝑁
𝑘 + 1

ቁ − 𝐸ோ,௞,௜]௞   less than 

[ቀ
𝑁

𝑘 − 1
ቁ , 0, ቀ

𝑁
𝑘 + 1

ቁ]௞  when 𝑖 = 1,2, . . , ቀ
𝑁
𝑘

ቁ − 1. If this is true, we call it a SAFE position.  

 
Theorem II.3.1 

If  ாಽ,ೖ,೔

௜
>

ா
ಽ,ೖ,ቀಿ

ೖ
ቁ

ቀே
௞

ቁ
  and  ாೃ,ೖ,೔

௜
>  

ா
ೃ,ೖ,ቀಿ

ೖ
ቁ

ቀே
௞

ቁ
  (𝑖 = 1,2, . . , ቀ

𝑁
𝑘

ቁ − 1),  then we have a SAFE position. 

Proof. 

We have a SAFE position if (ቀ
𝑁

𝑘 − 1
ቁ − 𝐸௅,௞,௜)𝑞௞ିଵ𝑝ேି௞ାଵ + 𝑖𝑞௞𝑝ேି௞ + (ቀ

𝑁
𝑘 + 1

ቁ −

𝐸ோ,௞,௜)𝑞௞ାଵ𝑝ேି௞ିଵ < ቀ
𝑁

𝑘 − 1
ቁ 𝑞௞ିଵ𝑝ேି௞ାଵ + ቀ

𝑁
𝑘 + 1

ቁ 𝑞௞ାଵ𝑝ேି௞ିଵ. 

It follows:  −𝐸௅,௞,௜𝑞௞ିଵ𝑝ேି௞ାଵ + 𝑖𝑞௞𝑝ேି௞−𝐸ோ,௞,௜𝑞௞ାଵ𝑝ேି௞ିଵ < 0 

So: −𝐸௅,௞,௜ ቀ
௣

௤
ቁ

ଶ
+ 𝑖(

௣

௤
) −𝐸ோ,௞,௜ < 0 when 𝑖 = 1,2, . . , ቀ

𝑁
𝑘

ቁ − 1. 
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What we need is 𝑖ଶ − 4𝐸௅,௞,௜𝐸ோ,௞,௜ < 0. Using ாಽ,ೖ,೔

௜
>

ா
ಽ,ೖ,ቀಿ

ೖ
ቁ

ቀே
௞

ቁ
=

ቀ ே
௞ିଵ

ቁ

ቀே
௞

ቁ
=

௞

ேି௞ାଵ
  and ாೃ,ೖ,೔

௜
>

ா
ೃ,ೖ,ቀಿ

ೖ
ቁ

ቀே
௞

ቁ
=

ቀ ே
௞ାଵ

ቁ

ቀே
௞

ቁ
=

ேି௞

௞ାଵ
 we get: 𝑖ଶ − 4𝐸௅,௞,௜𝐸ோ,௞,௜ <

ாಽ,ೖ,೔ாೃ,ೖ,೔

௞(ேି௞)
{(𝑘 + 1)(𝑁 − 𝑘 + 1) − 4𝑘(𝑁 − 𝑘)} =

ாಽ,ೖ,೔ாೃ,ೖ,೔

௞(ேି௞)
{(1 − 3𝑘)(𝑁 − 𝑘) + 𝑘 + 1)} ≤

ாಽ,ೖ,೔ாೃ,ೖ,೔

௞(ேି௞)
{(1 − 3𝑘) + 𝑘 + 1)} =

ாಽ,ೖ,೔ாೃ,ೖ,೔

௞(ேି௞)
{2 − 2𝑘} ≤ 0 

(𝑘 = 1,2, . . , 𝑁 − 1). ∎ 
 
Until now we studied the behaviour of an isolated set 𝑎𝑞௞ିଵ𝑝ேି௞ାଵ + 𝑏𝑞௞𝑝ேି௞ + 𝑐𝑞௞ାଵ𝑝ேି௞ିଵ. In 
practice there is a much more complicated interference, but the number of generated items can only 
grow, so that 𝑖ଶ − 4𝐸௅,௞,௜𝐸ோ,௞,௜ < 0 will hold in general when we can prove it for the isolated case. 
In the  next section we will prove that lexicographical order will produce SAFE positions. 
 
II.4  Lexicographical order and SAFE positions. 
 
Theorem II.4.1 
Lexicographical order produces SAFE positions. 
Proof 
We start with ℊ

௅
.  

We use induction to the number of players N. 
N=2 is straightforward.   
Suppose we have proven the theorem for 𝑁 − 1 players.  
We have {0ேି௞1௞} = 0{0ேି௞ିଵ1௞} ∪ 1{0ேି௞1௞ିଵ} and therefore 𝑙𝑒𝑥{0ேି௞1௞} =

[𝑙𝑒𝑥0{0ேି௞ିଵ1௞} ∪ 𝑙𝑒𝑥1{0ேି௞1௞ିଵ}]௞, where 𝑙𝑒𝑥 stands for lexicographical order. 

0{0ேି௞ିଵ1௞} consists of 𝑛ଵ = ቀ
𝑁 − 1

𝑘
ቁ elements and ℊ

௅
൫0{0ேି௞ିଵ1௞}൯ = 0ℊ

௅
൫{0ேି௞ିଵ1௞}൯, 

where ℊ
௅

 is now working on 𝑁 − 1 players and by induction assumption we have: ஺೔

௜
>

஺೙భ

௡భ
 where 𝐴௜  

stands for total number of generated BAD CASES up to row 𝑖 and 𝑖 = 1,2, . . , 𝑛ଵ − 1. 

ℊ
௅

൫{0ேି௞ିଵ1௞}൯ = {0ேି௞1௞ିଵ}, so 𝐴௡భ
= ቀ

𝑁 − 1
𝑘 − 1

ቁ. 

1{0ேି௞1௞ିଵ} consists of 𝑛ଶ = ቀ
𝑁 − 1
𝑘 − 1

ቁ elements and ℊ
௅

൫1{0ேି௞1௞ିଵ}൯ = 0{0ேି௞1௞ିଵ} +

1ℊ
௅

൫{0ேି௞1௞ିଵ}൯, where 0{0ேି௞1௞ିଵ} has already been produced by ℊ
௅

൫0{0ேି௞ିଵ1௞}൯  and 
therefore has no contribution to the number of generated BAD CASES. We can concentrate on 
1ℊ

௅
൫{0ேି௞1௞ିଵ}൯ with no overlap with 0ℊ

௅
൫{0ேି௞ିଵ1௞}൯ ; 1ℊ

௅
൫{0ேି௞1௞ିଵ}൯ is working on 𝑁 − 1 

players and by induction we have: ஻೔

௜
>

஻೙మ

௡మ
  where 𝐵௜  stands for total number of generated BAD 

CASES up to row 𝑖 (in sector 1{0ேି௞1௞ିଵ}) and 𝑖 =  1,2, . . , 𝑛ଶ − 1. 

ℊ
௅

൫{0ேି௞1௞ିଵ}൯ = {0ேି௞ାଵ1௞ିଶ}, so 𝐵௡మ
= ቀ

𝑁 − 1
𝑘 − 2

ቁ. 

 ஻೔

௜
>

஻೙మ

௡మ
 is only valid in the set 1{0ேି௞1௞ିଵ}. We have 𝐵௜ > 𝑖

஻೙మ

௡మ
= 𝑖 ቀ

௞ିଵ

ேି௞ାଵ
ቁ 

We have to prove: 
஼೙భశ೔

௡భା௜
>

஼೙య

௡య
  (𝑖 =  1,2, . . , 𝑛ଶ − 1) where 𝐶௡భା௜ stands for the generated BAD CASES by 

ℊ
௅

൫0{0ேି௞ିଵ1௞}൯ plus total number of generated BAD CASES up to row 𝑖 in set 1{0ேି௞1௞ିଵ}, 
𝐶௡భା௜ = 𝐴௡భ

+ 𝐵௜. 

where 𝑖 =  1,2, . . , 𝑛ଶ − 1;   𝑛ଷ = 𝑛ଵ + 𝑛ଶ = ቀ
𝑁
𝑘

ቁ;  𝐶௡య
= 𝐶௡భ

+ 𝐶௡మ
= ቀ

𝑁
𝑘 − 1

ቁ. 
஼೙భశ೔

௡భା௜
=

஺೙భ
ା஻೔

௡భା௜
>

஼೙య

௡య
=

௞

ேି௞ାଵ
 ; we have: 
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(𝑁 − 𝑘 + 1)൫𝐴௡భ
+ 𝐵௜൯ − 𝑘(𝑛ଵ + 𝑖) > (𝑁 − 𝑘 + 1) ቀ

𝑁 − 1
𝑘 − 1

ቁ + (𝑘 − 1)𝑖 − 𝑘 ቆቀ
𝑁 − 1

𝑘
ቁ + 𝑖ቇ =

ቀ
𝑁 − 1
𝑘 − 1

ቁ {(𝑁 − 𝑘 + 1) − (𝑁 − 𝑘)} − 𝑖 > 0 when 𝑖 < ቀ
𝑁 − 1
𝑘 − 1

ቁ = 𝑛2. 
 
We focus on ℊ

ோ
. By symmetry we have: ℊ

ோ
({0௠1௡}) = ℊ

௅
({0௡1௠}), so we get SAFE positions.∎ 

 
II.5 Optimal strategies and maximal winning probabilities. 
Lemma II.5.1 

The sequence ቀ𝑁
𝑘

ቁ 𝑝ேି௞𝑞௞ (𝑘 = 0,1, . . , 𝑁) consists of two parts: the first part is monotone 

increasing (may be empty) and the second part is monotone decreasing (may be empty). 
Proof 

Increasing values for 𝑘 = 1,2, . . , 𝑠 will be found if:   
ቀே

௞
ቁ௣ಿషೖ௤ೖ

ቀ ே
௞ିଵ

ቁ௣ಿషೖశభ௤ೖషభ
=

(ேି௞ାଵ)

௞

௤

௣
> 1, so   

 𝑝 <
ேି(௞ିଵ)

ேାଵ
 . It follows: 𝑝 <

ேି(௦ିଵ)

ேାଵ
. In the same way we can show that decreasing values for 𝑘 =

𝑠 + 1, 𝑠 + 2, . . , 𝑁 comes to 𝑝 >
ேି(௞ିଵ)

ேାଵ
 . So: 𝑝 >

ேି௦

ேାଵ
. 

∀௣∈(଴,ଵ)∃௦∈{଴,ଵ,..,ே} :  
ேି௦

ேାଵ
< 𝑝 <

ேି(௦ିଵ)

ேାଵ
  and for this value of 𝑠 we have:  

sequence is increasing if 𝑘 = 1,2, . . , 𝑠 and decreasing if 𝑘 = 𝑠 + 1, 𝑠 + 2, . . , 𝑁. ∎ 
 
It follows from sections II.3 and II.4 that optimal solutions can be found by focusing on 

[ቀ
𝑁

𝑘 − 1
ቁ , 0, ቀ

𝑁
𝑘 + 1

ቁ]௞. 

We are looking for an optimal spread of these [ቀ
𝑁

𝑘 − 1
ቁ , 0, ቀ

𝑁
𝑘 + 1

ቁ]௞   configurations. We define 

  𝒲௞ = [ቀ
𝑁

𝑘 − 1
ቁ , 0, ቀ

𝑁
𝑘 + 1

ቁ]௞   = ቀ
𝑁

𝑘 − 1
ቁ 𝑞௞ିଵ𝑝ேି௞ାଵ + 0. 𝑞௞𝑝ேି௞ + ቀ

𝑁
𝑘 + 1

ቁ 𝑞௞ାଵ𝑝ேି௞ିଵ   

(𝑘 = 1,2, . . , 𝑁 − 1).  
 
We define 0-parity of a CASE as the parity of the number of zero’s in that CASE. 
 
Theorem II.5.1 
The maximal probabilities and the optimal strategies of our hat problem are: 
when  𝑝 < 𝑞 or 𝑁 is even: 

∑ ቀ
𝑁
𝑘

ቁ௞ ௘௩௘௡ 𝑝௞𝑞ேି௞ =
ଵା(௤ି௣)ಿ

ଶ
; strategy: even 0-parity, 

when  𝑝 > 𝑞 and 𝑁 is odd: 

∑ ቀ
𝑁
𝑘

ቁ௞ ௢ௗௗ 𝑝௞𝑞ேି௞ =
ଵି(௤ି௣)ಿ

ଶ
; strategy: odd 0-parity, 

when  𝑝 = 𝑞:    
 ଵ
ଶ
;    strategy: all players odd 0-parity or all players even 0-parity. 

Proof 
In an optimal solution there can’t be much distance between the  𝒲௞. For instance, if  𝒲௞ and  𝒲௞ାସ 
are in an optimal solution, then we can insert without interference  𝒲௞ାଶ. Furthermore if  𝒲௞ and 
 𝒲௞ାଷ are in an optimal solution and there is nothing between we can improve the optimal solution 
by replacing  𝒲௞ by  𝒲௞ାଵ or  𝒲௞ାଷ by  𝒲௞ାଶ (use Lemma II.5.1). So in the optimal solution we have 

 𝒲௞ ,  𝒲௞ାଶ, ….: all even or all odd terms in ∑ ቀ
𝑁
𝑘

ቁ௞ 𝑝௞𝑞ேି௞. 

We have: ∑ ቀ
𝑁
𝑘

ቁ௞ ௘௩௘௡ 𝑝௞𝑞ேି௞ − ∑ ቀ
𝑁
𝑘

ቁ௞ ௢ௗௗ 𝑝௞𝑞ேି௞ = (𝑞 − 𝑝)ே.  

Using     ∑ ቀ
𝑁
𝑘

ቁ௞ ௘௩௘௡ 𝑝௞𝑞ேି௞ + ∑ ቀ
𝑁
𝑘

ቁ௞ ௢ௗௗ 𝑝௞𝑞ேି௞ = (𝑞 + 𝑝)ே = 1, we obtain our goal. ∎ 

So we have:  maximal winning probability:   ଵା|௤ି௣|ಿ

ଶ
     (𝑁 = 1,2,3, … ). 
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II.6  Hats: Nothing. 
Until now we were interested in perfect guessing: all players must guess correct. In this section we 
demand the opposite: all players must guess wrong. 
The theory of maximal winning probabilities stays the same, but the optimal strategy is now: use the 
strategy in ‘all players guess right’, followed by a bit flip. 
 

Appendix A (part II) 
In this appendix we prove some properties of the generated BAD CASES, using lexicographical order 
in {0௠1௡}. We define 𝐿(𝑚, 𝑛) = ℊ

௅
(𝑙𝑒𝑥({0௠1௡}) and 𝑅(𝑚, 𝑛) = ℊ

ோ
(𝑙𝑒𝑥({0௠1௡}). 

𝐿 is the ordered set of all generated items 𝑒௜: 𝐿(𝑚, 𝑛) = [𝑒ଵ, 𝑒ଶ, … , 𝑒൫௠ା௡
௡ ൯] where we use the 

notation [] for an ordered set. For example: 𝐿(3,2) = [2,1,0,1,0,0,1,0,0,0] (see Table II.1.1). 
 
Lemma A.1 
𝑙𝑒𝑥({0௠1௡}) = [⋃ 1௞0𝑙𝑒𝑥({0௠ିଵ1௡ି௞})]௡

௞ୀ଴   
Proof 
Every element of {0௠1௡} starts with a fixed number of one’s followed by a zero. ∎ 
 
Lemma A.2 
ℊ

௅
(1௞)0{0௠ିଵ1௡ି௞} ⊂ ℊ

௅
൫[⋃ 1௦0{0௠ିଵ1௡ି௦}]௞ିଵ

௦ୀ଴ ൯  
Proof 
ℊ

௅
൫1௞൯0{0௠ିଵ1௡ି௞} = [⋃ 1௦01௞ି௦ିଵ0{0௠ିଵ1௡ି௞}]௞ିଵ

௦ୀ଴ ⊂ ℊ
௅

൫[⋃ 1௦0{0௠ିଵ1௡ି௦}]௞ିଵ
௦ୀ଴ ൯. ∎  

 
Theorem A.1 
𝐿(𝑚, 𝑛) = [⋃ 𝐿(𝑚 − 1, 𝑛 − 𝑘)]௡

௞ୀ଴   
Proof 
Using Lemma A.1 we have: 𝐿(𝑚, 𝑛) = ℊ

௅
(𝑙𝑒𝑥({0௠1௡}) = ℊ

௅
൫[⋃ 1௞0𝑙𝑒𝑥{0௠ିଵ1௡ି௞}]௡

௞ୀ଴ ൯ =

[⋃ ℊ
௅

൫1௞൯0𝑙𝑒𝑥({0௠ିଵ1௡ି௞}) ⋃ 1௞0ℊ
௅

(𝑙𝑒𝑥({0௠ିଵ1௡ି௞})௡
௞ୀ଴ )]௡

௞ୀ଴ . 
By Lemma A.2 we have  ℊ

௅
൫1௞൯0𝑙𝑒𝑥({0௠ିଵ1௡ି௞} is hit by preceding lexicographical elements, so 

we have:  𝐿(𝑚, 𝑛) = [⋃ 1௞0ℊ
௅

൫𝑙𝑒𝑥൫{0௠ିଵ1௡ି௞}൯൧௡
௞ୀ଴ = [⋃ 𝐿(𝑚 − 1, 𝑛 − 𝑘)]௡

௞ୀ଴ . ∎ 
 
Theorem A.2 
𝐿(𝑚, 𝑛) = [𝑛 ⋃ (𝑛 − 1) ⋃ (𝑛 − 2) … … 3

௞೙షభ
௞೙షమୀ଴

௠ିଵ
௞೙షభୀ଴ ⋃ 2 ⋃ ൫10௞భାଵ൯ ]                     (∗)

௞మ
௞భୀ଴

௞య
௞మୀ଴   

Proof 
Induction to 𝑚 + 𝑛. 
We have 𝐿(0, 𝑛) = [𝑛]  and 𝐿(𝑚, 1) = [10௠], which both agrees with (∗). 
We also have: 
[𝑛 ⋃ (𝑛 − 1) ⋃ (𝑛 − 2) … … 3

௞೙షభ
௞೙షమୀ଴

௠ିଵ
௞೙షభୀ଴ ⋃ 2 ⋃ ൫10௞భାଵ൯] =

௞మ
௞భୀ଴

௞య
௞మୀ଴   

[𝑛 ⋃ (𝑛 − 1) ⋃ (𝑛 − 2) … … 3
௞೙షభ
௞೙షమୀ଴

௠ିଶ
௞೙షభୀ଴ ⋃ 2 ⋃ ൫10௞భାଵ൯

௞మ
௞భୀ଴

௞య
௞మୀ଴ +  

 (𝑛 − 1) ⋃ (𝑛 − 2) … … 3௠ିଵ
௞೙షమୀ଴ ⋃ 2 ⋃ ൫10௞భାଵ൯]

௞మ
௞భୀ଴

௞య
௞మୀ଴ = (induction assumption)=

[𝐿(𝑚 − 1, 𝑛) ⋃ 𝐿(𝑚, 𝑛 − 1)] =(Theorem A.1)= [𝐿(𝑚 − 1, 𝑛) ⋃ 𝐿(𝑚 − 1, 𝑛 − 1 − 𝑘)]௡ିଵ
௞ୀ଴ = 

(Theorem A.1)= 𝐿(𝑚, 𝑛)∎ 
 
Theorem A.3 
𝑅(𝑛, 𝑚) = 𝐿(𝑚, 𝑛)  
Proof 
By reflection in the middle of our set of players and simultaneously interchanging the color of our 
players we obtain: 𝑅(𝑛, 𝑚) = 𝐿(𝑚, 𝑛). ∎ 
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